SERIES CONVERGENCE & DIVERGENCE FLOWCHART

(Follow the steps to determine if a series converges or diverges!)

Step 1: Check the Basics

Is the series of the form $\sum a_n$? If yes, continue!

Does $\mathbf{a_n}$ approach zero as $\mathbf{n} \rightarrow \infty$?

If **NO**→The series diverges by the Divergence Test.

If **YES** \rightarrow Continue to Step 2.

Step 2: Identify the Type of Series

Is it a p-series? (Where p is a constant.)

If $p > 1 \rightarrow Converges$.

If $p \le 1 \rightarrow Diverges$.

Is it a geometric series? (Where r is the common ratio)

If $|r| < 1 \rightarrow Converges$.

If $|r| \ge 1 \rightarrow Diverges$.

Is it an alternating series?

If
$$\left\{ \begin{array}{l} \mathbf{a_n} \text{ decreases} \\ \mathbf{lim} \quad \mathbf{a_n} = 0 \end{array} \right\}$$
 Converges.

Otherwise, try another test!

Step 3: Use the Right Convergence Test

Comparison Test

Try this if your series looks similar to a known p-series or geometric series.

Limit Comparison Test

Use this if direct comparison doesn't work.

Ratio Test Best for factorials. exponentials,

or powers.

Root Test Good for nth powers..

Integral Test Use for series that resemble improper integrals.

Step 4: Absolute vs Conditional Convergence

(If Alternating Series Passed)

If $\sum a_n$ converges \rightarrow Absolutely Convergent (which means the original series also converges).

If $\sum a_n$ diverges, but $\sum a_n$ converges \rightarrow Conditionally Convergent.

Summary: Which Test to Use?

P-Series / Geometric Series? → Check direct rules.

Alternating Series? → Try the Alternating Series Test first.

Factorial, exponential, or power expressions? \rightarrow Try the Ratio or Root Test. Integral-looking terms? → Try the Integral Test.

Need comparison? → Try the Comparison or Limit Comparison Test.

Not sure? → Use Ratio or Root Test as general go-tos!

THE RIGHT CONVERGENCE TEST

(For step 3)

Comparison Test

Compare **a**_n with a known convergent/divergent series.

If $0 \le a_n \le b_n$ and $\sum b_n$ converges then, $\sum a_n$ converges.

If $b_n \ge a_n$ and $\sum b_n$ diverges then, $\sum a_n$ diverges.

Limit Comparison Test

Pick a known series $\sum b_n$ and compute $\lim_{n\to\infty} \frac{a_n}{b_n} = L$.

If $0 < L < \infty$, both series behave the same (both converge or both diverge).

Ratio Test

Compute $L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$

If **L < 1**, the series converges absolutely.

If L > 1 or $L = \infty$, the series diverges.

If **L = 1**, the test is inconclusive—try another method!

Root Test

Compute $L = \lim_{n \to \infty} \sqrt{|\mathbf{a}_n|}$

If **L < 1**, the series converges absolutely.

If L > 1, the series diverges.

If L = 1, the test is inconclusive.

Integral Test

If f(x) (continuous, positive, decreasing) then $\sum \mathbf{a_n}$ also converges.

If $\int_{1}^{\infty} f(x) dx$ diverges then $\sum \mathbf{a_n}$ also diverges.

