MATHIGH

1 AP Calculus Formula Mastery Tracker

Designed by Engin Savaş | Mathigh.com

"You don't master a formula by memorizing it — you master it when it becomes a reflex grounded in meaning."

This tracker helps you recall, visualize, and *apply* every major formula across AB & BC topics using a 1–7–14–30 spaced repetition cycle.

Section 1: Core Derivative Rules

Formula	Visual / Conceptual Hook	Application Link	Recall Status	Revisit (1–7– 14–30)	Common Trap
$(x^n)' = nx^{n-1}$	"Exponent slides down, power drops by one."	Building slope equations and tangent lines	☐ Know☐ Practice☐ Missed	0000	Forgetting constant factors
(uv)' = u'v + uv'	"Derivative shares work — like teamwork."	Product-based motion problems		0000	Dropping one term
$(\frac{u}{v})' = \frac{u'v - uv'}{v^2}$	"Lo d Hi – Hi d Lo / Lo Lo"	Related rates and rational models			Mixing numerator order
$(f(g(x)))' = f'(g(x))$ $\cdot g'(x)$	"Outer × Inner — like a gear chain."	Composite motion, exponential decay			Forgetting inner derivative
Implicit Derivative	"Differentiate everything; tag y's with dy/dx."	Circle, ellipse, and curve slope		0000	Forgetting dy/dx on y terms

MATHIGH

Section 2: Integration & FTC

Formula	Visual / Conceptual Hook	Application Link	Recall Status	Revisit	Common Trap
$\int x^n dx = \frac{x^{n+1}}{n+1} + C$	"Reverse of derivative; exponent rises."	Area accumulation			Using n = −1
$\int \frac{1}{x} dx = \ln x + C$	х	+C)	"Integral of slope 1/x is log growth."	Population/logarithmic growth	
Substitution	"Undo the chain rule."	Composite integrals, motion			Wrong bounds
$\int_{a}^{b} f'(x)dx$ $= f(b) - f(a)$	"Integral = total accumulated change."	Position, cost, temperature change			Mixing up limits

Section 3: Trigonometric & Inverse Functions

Function	n Derivative / Integra	l Visual / Conceptual Hook	Application Link	Recall Trap
sin x	cos x	"Derivative shifts 90° forward."	Oscillation slope	□□□ Forgetting sign for cosx
cos x	-sin x	"Derivative mirrors wave upside down."	Harmonic motion	□□□ Missing negative
tan x	sec ² x	"Steepness grows fast — squares up."	Incline/slope models	□□□ Missing square
arcsin x	$\frac{1}{\sqrt{1-x^2}}$	"Triangle: opposite = x, hyp = 1."	Inverse modeling	□□□ Domain issue (

MATHIGH

Section 4: BC Extension Formulas

Formula	Visual Hook	Application Link	Recall	Revisit	Trap
$A = \frac{1}{2} \int r^2 d\theta$	"Slice of a circle; radius squared builds area."	Polar regions		0000	Squaring r(θ)
$L = \int \sqrt{(dx/dt)^2 + (dy/dt)^2} dt$	"Distance = sum of motion components."	Curve length			Forgetting squares
Taylor Series	$f(x) = \sum \frac{f^{(n)}(c)}{n!} (x - c)^n$	"Function = infinite polynomial DNA."	Approximations		0000
Ratio Test	$L = \lim \frac{a_{n+1}}{a_n}, L < 1 \to \text{conv.}$	"Growth shrink factor < 1."	Convergence		

How to Use This Tracker

- 1. Mark Recall Status after each study session.
- 2. Use the **1–7–14–30** boxes for spaced repetition (revisit after 1 day, 1 week, 2 weeks, 1 month).
- 3. Add voice notes or mini-derivations for "Missed" formulas (digital users can use comment tools).
- 4. After marking "Mastered," recheck all mastered formulas monthly.
- 5. Each month, review the "Common Trap" column recurring mistakes reveal your personal Calculus Blind Spots.