MATHIGH

AP Calculus Quick Concept Notes

Overview

Your complete conceptual guide to mastering **AP Calculus AB & BC** — built for understanding, not memorization.

Clear explanations, key formulas, visual logic, and real exam-style reasoning.

Differentiation — Understanding Instantaneous Change

Core Idea: The derivative represents *instantaneous rate of change* — the slope of the tangent line.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Essential Rules:

- Power: $\frac{d}{dx}[x^n] = nx^{n-1}$
- Product: (uv)' = u'v + uv'
- Quotient: $\left(\frac{u}{v}\right)' = \frac{u'v uv'}{v^2}$
- Chain: $(f(g(x)))' = f'(g(x)) \cdot g'(x)$
- Implicit / Inverse Differentiation
- Parametric: $\frac{dy}{dx} = \frac{dy/dt}{dx/dt}$

Key Theorem — Mean Value Theorem (MVT):

If f is continuous on [a,b] and differentiable on (a,b), then there exists some $c \in (a,b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

MVT guarantees that the *instantaneous* rate of change equals the *average* rate somewhere in the interval.

Applications: Tangent/normal lines, motion, optimization, related rates.

Common Pitfalls:

- Forgetting the inner derivative in Chain Rule.
- Confusing local vs absolute extrema.

Integration & Accumulation — The Total Change Principle

Core Idea: Integration is the inverse of differentiation; it measures *total change or accumulated area*.

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C, \ (n \neq -1)$$

Fundamental Theorem of Calculus (FTC):

• Part I (Net Change):
$$\int_a^b f'(x) dx = f(b) - f(a)$$

• Part II (Derivative of Integral):
$$\frac{d}{dx} \left[\int_a^x f(t) dt \right] = f(x)$$

Applications:

- Area Between Curves
- Volume (Disk / Washer / Shell)
- Accumulation in motion models: $s(t) = \int v(t) dt$

BC Extensions:

- Integral Test (for series):

 If f(x) is positive, decreasing, and continuous, then $\sum f(n) \text{ converges iff } \int f(x) dx \text{ converges.}$
- Polar Area:

$$A = \frac{1}{2} \int_{\alpha}^{\beta} \left[r(\theta) \right]^{2} d\theta$$

Common Mistakes:

- Missing constant of integration.
- Using wrong bounds or variable.

Differential Equations — Modeling Continuous Change

Core Idea: Express how rates describe dynamic systems.

Forms:

- Separable: $\frac{dy}{dx} = ky \Rightarrow y = Ce^{kx}$
- Logistic Model: $\frac{dy}{dx} = ky\left(1 \frac{y}{L}\right)$
- Slope Fields: Visualize behavior of solutions.
- Euler's Method: Approximate numerically.

BC Extension — Series Solutions:

- Taylor Series: $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!} (x-c)^n$
- Maclaurin Series (c=0): $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$
- Error Bound (Lagrange): $R_n(x) \leq \frac{M|x-c|^{n+1}}{(n+1)!}$

Tip: Always interpret DEs graphically before solving.

Applications of Derivatives — Analyzing Behavior

Core Idea: Derivatives describe how functions grow, curve, and reach extremum values.

Tests & Theorems:

- Critical Points: where f'(x)=0 or undefined
- First Derivative Test: f' changes + → ⇒ max; → + ⇒ min
- Second Derivative Test: $f''(c)>0 \Rightarrow min$; $f''(c)<0 \Rightarrow max$
- Concavity: f">0 ⇒ concave up; f"<0 ⇒ concave down
- Inflection Points: where f" changes sign
- Extreme Value Theorem: continuous f on [a,b] has both min & max

MATHIGH

Optimization Framework:

- 1. Define the quantity to optimize.
- 2. Express it in one variable.
- 3. Differentiate \rightarrow set f'(x)=0.
- 4. Verify with sign or endpoint test.

MVT in Practice: Connects slope of secant to tangent — a foundational FRQ justification.

Common Mistakes:

- Ignoring endpoints.
- Forgetting justification ("since f' changes sign...").

• Final Thoughts — Mathematical Communication

AP Calculus is not just computation — it's reasoning. Scoring is built on *conceptual clarity and justification*.

"The exam doesn't ask if you know the formula — it asks if you can explain why it works."

Follow this sequence:

Claim → Reason → Evidence

Be precise, be visual, be logical.