

AP Calculus AB Formula Sheet

Limits & Continuity

Topic Formula/Rule

Limit Laws $\lim_{x \to c} [f(x) \pm g(x)] = \lim_{x \to c} f(x) \pm \lim_{x \to c} g(x)$

 $\lim_{x \to c} [f(x) \cdot g(x)] = \lim_{x \to c} f(x) \cdot \lim_{x \to c} g(x)$

Indeterminate Forms
Use L'Hôpital's Rule for $\frac{0}{0}$ or $\frac{\infty}{\infty}$ form $\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$

Continuity Condition f(x) is continuous at x = c if: 1. f(c) is defined

2. $\lim_{x \to c} f(x)$ exists

3. $\lim_{x \to c} f(x) = f(c)$

Discontinuities Removable: Hole in the graph (factor cancellation).

Jump: Left and right limits are different (piecewise).

Infinite: Vertical asymptote.

Intermediate Value Thm (IVT) If f is continuous on [a,b], then for every value k

between f(a) and f(b) there exists at least one c in

(a,b) such that f(c) = k.

AP Calculus AB Formula Sheet

Derivative Rules & Techniques

Topic Formula/Rule

Power Rule $\frac{d}{dx}[u^n] = nu^{n-1} \cdot u'$

Product Rule $\frac{d}{dx}[u \cdot v] = u'v + uv'$

Quotient Rule $\frac{d}{dx} \left[\frac{u}{v} \right] = \frac{u'v - uv'}{v^2}$

Chain Rule $\frac{d}{dx}[f(g(x))] = f'(g(x)) \cdot g'(x)$

Implicit Differentiation Differentiate all terms w.r.t x. For y terms, multiply by $\frac{dy}{dx}$.

Solve for $\frac{dy}{dx}$.

Derivative of Inverse Function $\frac{d}{dx}[f^{-1}(x)] = \frac{1}{f'(f^{-1}(x))}$

Parametric Derivative $\frac{dy}{dx} = \frac{dy/dt}{dx/dt}$

AP Calculus AB Formula Sheet

Exponential, Logarithmic & Trig Derivatives

Function	<u>Derivative</u>	<u>Function</u>	<u>Derivative</u>
$\ln u$	$\frac{u'}{u}$	arcsin u	$\frac{u'}{\sqrt{1-u^2}}$
e^u	e" !	arccos u	$\frac{-u'}{\sqrt{1-u^2}}$
a^u	$a^u \cdot u' \cdot \ln a$	arctan u	$\frac{u'}{1+u^2}$
$\sin u$	$u' \cdot \cos u$	sec u	$\sec u \cdot \tan u \cdot u'$
$\cos u$	$-u'\cdot\sin u$	csc u	$-\csc u \cdot \cot u \cdot u'$
tan u	$u' \cdot \sec^2 u, \ u'(1 + \tan^2 u)$	$\cot u$	$-\csc^2 u \cdot u'$

AP Calculus AB Formula Sheet

First & Second Derivative Tests

Concept	Formula/Rule
Monotonicity (Increasing/Decreasing)	$f'(x) > 0 \Rightarrow \text{increasing}$
	$f'(x) < 0 \Rightarrow$ decreasing
Critical Points	Occur where $f'(x) = 0$ or $f'(x)$ is undefined.
First Derivative Test	$f'(x)$ changes $(+)$ to $(-) \Rightarrow$ Local Max
	$f'(x)$ changes $(-)$ to $(+)$ \Rightarrow Local Min
Concavity	$f''(x) > 0 \Rightarrow \text{Concave Up}$
	$f''(x) < 0 \Rightarrow$ Concave Down
	Inflection Points occur where $f''(x)$ changes sign.
Second Derivative Test	If $f'(c) = 0$: $f''(c) > 0 \Rightarrow$ Local Min
	If $f'(c) = 0: f''(c) < 0 \Rightarrow \text{Local Max}$
Absolute Extrema	On a closed interval $[a,b]$, test all critical points
	and endpoints for max/min.

AP Calculus AB Formula Sheet

Integrals & Fundamental Theorem of Calculus

Topic

Power Rule (Integral)

Logarithmic Integral

Exponential Integral

u -Substitution

FTC Part 1 (Net Change)

FTC Part 2 (Derivative of Integral)

Average Value of a Function

Formula/Rule

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C, \ n \neq -1$$

$$\int \frac{1}{x} dx = \ln|x| + C$$

$$\int e^x dx = e^x + C$$

Let
$$u = g(x)$$
, then $\int f(g(x))g'(x)dx = \int f(u)du$

$$\int_{a}^{b} f'(x) dx = f(b) - f(a)$$

$$\frac{d}{dx} \left[\int_{a}^{g(x)} f(t) dt \right] = f(g(x)) \cdot g'(x)$$

$$f_{avg} = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$

AP Calculus AB Formula Sheet

Motion Models & Trig Identities

Concept

Velocity & Acceleration

Net Displacement

Total Distance Traveled

Change in Direction

Trig Identities

Common Trig Integrals

Formula

$$v(t) = s'(t), \quad a(t) = v'(t)$$

$$\int_{t_1}^{t_2} v(t) dt$$

$$\int_{t}^{t_2} |v(t)| dt$$

Occurs when v(t) changes sign

$$\sin^2 x + \cos^2 x = 1$$

$$1 + \tan^2 x = \sec^2 x$$

$$1 + \cot^2 x = \csc^2 x$$

$$\int \sin x dx = -\cos x + C$$

$$\int \cos x dx = \sin x + C$$

$$\int \sec^2 x dx = \tan x + C$$

$$\int \csc^2 x dx = -\cot x + C$$