AP Calculus BC Formula Sheet (Final Elite Edition)

Complete reference for the AP Calculus BC Exam – includes all AB content + BC-exclusive topics. Designed for the digital and paper exam formats.

I. Core AB Review (Foundation for BC)

- Limits & Continuity: All standard limit laws, indeterminate forms, and continuity criteria apply.
- **Derivative Techniques:** Power, Product, Quotient, Chain, Implicit, Inverse, Exponential, Logarithmic, and Trig Derivatives.
- Integrals & FTC:

$$\int_{a}^{b} f'(x) dx = f(b) - f(a), \frac{d}{dx} \left(\int_{a}^{x} f(t) dt \right) = f(x)$$

Motion Models:

$$v(t) = s'(t), a(t) = v'(t), s(t) = \int v(t) dt$$

II. Integration Techniques (BC-Exclusive Extensions)

Integration by Parts

$$\int u \, dv = u \, v - \int v \, du$$

Choose u and dv using **LIATE rule** (Logarithmic \rightarrow Inverse \rightarrow Algebraic \rightarrow Trig \rightarrow Exponential).

Partial Fractions

Decompose rational functions:

$$\int \frac{P(x)}{Q(x)} dx = \int \left(\frac{A}{x-a} + \frac{B}{x-b}\right) dx \Rightarrow A \ln|x-a| + B \ln|x-b|$$

Example:

$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C$$

Improper Integrals

Check convergence using limits:

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx \text{ converges if } p > 1$$

III. Sequences & Series

Convergence Tests Summary

Test	Condition	Converges When
n-th Term (Divergence)	$\lim_{n\to\infty}a_n\neq 0$	Diverges
Geometric	$\sum a \cdot r^n$ $\sum \frac{1}{n^p}$	r < 1
p-Series	$\sum \frac{1}{n^p}$	<i>p</i> > 1
Alternating Series Test	$a_n > 0$, $a_{n+1} \le a_n$, $\lim a_n = 0$	Conditionally
Ratio Test	$L=\lim_{n\to\infty}\left \frac{a_{n+1}}{a_n}\right $	$\begin{cases} \textit{Converges if } L < 1 \\ \textit{Diverges if } L > 1 \\ \textit{Inconclusive if } L = 1 \end{cases}$
Root Test	$L=\lim_{n\to\infty}\sqrt[n]{ a_n }$	$\begin{cases} \textit{Converges if } L < 1 \\ \textit{Diverges if } L > 1 \\ \textit{Inconclusive if } L = 1 \end{cases}$
Integral Test	f(x) positive, continuous, decreasing; $a_n = f(n)$	$\int_{1}^{\infty} f(x) dx \ converges$
Comparison Test	$0 \le a_n \le b_n$	$\sum b_n$ converges $\Rightarrow \sum a_n$ converges
	$0 \le b_n \le a_n$	$\sum b_n$ diverges $\Rightarrow \sum a_n$ diverges
Limit Comparison Test (LCT)	$\lim_{n o \infty} rac{a_n}{b_n} = L, \ \ 0 < L < \infty$	Both $\sum a_n$ and $\sum b_n$ behave the same

Error Bound (Alternating Series): $\mid R_n \mid \ \leq \ \mid a_{n+1} \mid$

IV. Power, Taylor & Maclaurin Series

Function

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!} (x - c)^{n}$$

$$R_n(x) = \frac{M|x-c|^{n+1}}{(n+1)!}$$

Expansion

Radius of Convergence: |x - c| < R from Ratio Test.

Common Maclaurin Series (for |x|<1 unless stated)

$\frac{1}{1-x}$	$\sum\nolimits_{n=0}^{\infty}x^{n}$	
e^x	$\sum\nolimits_{n=0}^{\infty}\frac{x^n}{n!}$	
	\mathbf{r}^{∞}	2n+1

$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$

$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$$

$$\sum_{n=0}^{\infty} {k \choose n} x^n (Generalized Binomial)$$

Series Manipulation Tips

- Multiply by x^m to shift powers (e.g. $x \cos x$).
- Substitute $x \to 2x$ for expansions like e^{2x} .
- Differentiate or integrate known series to generate new ones.

V. Parametric & Polar Functions

Parametric

$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt}, \ \frac{d^2y}{dx^2} = \frac{d}{dt} \left(\frac{dy/dx}{dx/dt} \right)$$

$$L = \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$$

Polar

$$x = rcos\theta$$
, $y = rsin\theta$

$$\frac{dy}{dx} = \frac{r'\sin\theta + r\cos\theta}{r'\cos\theta - r\sin\theta}$$

$$A = \frac{1}{2} \int_{a}^{\beta} \left[r(\theta) \right]^{2} d\theta, \ L = \int_{a}^{\beta} \sqrt{r^{2} + \left(\frac{dr}{d\theta} \right)^{2}} d\theta$$

 $\vec{r}(t) = \vec{r}(a) + \int_{a}^{t} \vec{v}(u) \, du$

VI. Vector Functions

Reconstruct Position

Concept	Formula
Position	$\vec{r}(t) = \langle x(t), y(t) \rangle$
Velocity	$ec{v}(t) = ec{r}'(t)$
Acceleration	$\vec{a}(t) = \vec{v}'(t)$
Speed	$ ec{v}'(t) $
Distance	$\int_{a}^{b} \vec{v}(t) \ dt$

VII. Exam-Day Strategies

▼ FRQ Strategy

- Always write the **first 2–3 terms** explicitly in Taylor or Maclaurin expansions. Partial credit is awarded even if the remainder is wrong.
- Label your reasoning ("Since f'(x) changes from + to -, f has a local max at x = ...").

Error Prevention

- Polar Area \rightarrow never forget the ½ and r^2 .
- In vector/parametric problems, clearly separate derivatives wrt t and x.

✓ Time Management

- If a calculator question takes >4 minutes, approximate numerically (\approx) and move on.
- Show each substitution step in partial fractions / integration by parts for rubric credit.